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1. Introduction

The AdS/CFT correspondence [1 – 3] (see [4] for a review) is a useful duality between a

string theory in (d + 1)-dimensional anti de Sitter spacetime (times a compact space) and

a d-dimensional conformal field theory. The AdS/CFT correspondence can be extended to

more general cases of the string/gauge duality for non-conformal and non-supersymmetric

theories. In this scheme one can discuss some features of the low energy QCD such as

confinement and spontaneous chiral symmetry breaking. Such an approach to low energy

behaviors of QCD in terms of the string/gauge duality is often called the holographic

QCD [5 – 10] (and references therein).

One of the interesting recent developments in the holographic approach to QCD is the

D4/D8-D8 model proposed by Sakai and Sugimoto [11, 12]. This brane system consists

of Nc D4-branes compactified on S1 and probe Nf D8-D8-brane pairs. The D4-branes are

described by the extremal brane solution in the near horizon limit with one of the spatial

directions along its world-volume compactified on S1. This gravitational background is

dual to a five-dimensional gauge theory, which looks four-dimensional at energy scale below

the compactification scale. This description is valid for the case 1 ¿ g2
YM

Nc ¿ 1/g4
YM

,

where gYM is the four-dimensional gauge coupling. Imposing periodic boundary conditions

on the bosons and anti-periodic ones on the fermions along the compactified direction,

supersymmetry is explicitly broken. The scalars and the fermions on the D4-branes become

massive and are decoupled from the system at low energy. Thus one obtains a U(Nc) pure

gauge theory. To describe quarks in the fundamental representation of the gauge group

U(Nc) one introduces Nf D8-D8 pairs into the D4 background. The probe approximation

Nf ¿ Nc [5] allows us to treat the Nf D8-D8 pairs as a probe, which does not affect

the D4 background. A string connecting the D4-branes and the D8-branes (D8-branes)

represents a massless left-(right-)handed quark with Nf flavors. Therefore one obtains a

four-dimensional U(Nc) gauge theory with Nf flavored massless quarks in the fundamental
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representation of the gauge group at low energy. The U(Nf )L × U(Nf )R symmetry of the

D8 and D8-branes represents a chiral symmetry of the quarks. It was shown in ref. [11] that

this chiral symmetry is broken to a diagonal symmetry U(Nf )V because of a configuration

of the probe D8-D8 pairs. By the topology of the D4-brane geometry they must have a

curved configuration in which the D8-branes and the D8-branes are connected each other

(see figure 2), which breaks the chiral symmetry.

The Sakai-Sugimoto model was also studied at finite temperature T [13 – 15]. There are

two D4-brane geometries which represent a low temperature phase and a high temperature

phase respectively. A phase transition between these phases occurs at a certain critical

temperature Tc. This transition corresponds to a confinement/deconfinement transition in

a dual gauge theory [16]. For each of the phases one can introduce probe D8-D8 pairs. The

only configuration of the D8-D8 pairs which can realize in the low temperature phase T < Tc

is a curved D8-D8 configuration as in the zero temperature case. Thus the chiral symmetry

is always broken in the low temperature phase. On the other hand, another configuration

exists in addition to the curved one in the high temperature phase T > Tc. The new

configuration consists of straight D8-branes and D8-branes disconnected each other (see

figure 3). The chiral symmetry is unbroken for this configuration. A chiral symmetry phase

transition can occur between these two configurations at a certain temperature [13, 14].

The purpose of the present paper is to analyze the Sakai-Sugimoto model at finite tem-

perature T and finite baryon number chemical potential µ. We introduce a non-vanishing

background U(1) gauge field on the probe D8-D8-brane world-volume. The asymptotic

value of this gauge field background is related to the baryon number chemical potential.

There are several related works in which chemical potentials are introduced as asymptotic

values of gauge fields [17 – 21]. The gauge fields and the chemical potentials considered

there, however, are those for the R symmetry in the bulk geometry or for the isospin sym-

metry on the probe brane world-volume. In contrast, we consider the chemical potential for

the baryon number U(1)V symmetry on the probe brane. The D8-D8-brane configuration

and the gauge field background are determined by equations derived from the Dirac-Born-

Infeld effective action on the world-volume of the probe branes. By solving these equations

and comparing values of the effective action for the solutions we discuss a chiral symmetry

breaking as in refs. [11, 13, 14].

We can summarize our results as follows. In the low temperature phase T < Tc of

the confinement/deconfinement transition there is a unique solution for the probe brane

configuration and the gauge field background. As in the case without the gauge field

background the probe branes have a curved configuration and the chiral symmetry is

always broken. In the high temperature phase T > Tc there are two types of solutions.

One solution has a curved brane configuration and the chiral symmetry is broken. The

other solution has a straight brane configuration and the chiral symmetry is unbroken. A

phase transition between these two solutions occurs at certain temperature and chemical

potential. The transition is of the first order. There is a critical value of the chemical

potential above which the phase transition never occurs for any temperature. A qualitative

feature of the phase diagram is shown in figure 1.

The organization of this paper is as follows. In section 2 we review the bulk geometry
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Figure 1: The phase diagram of the dual gauge theory.

of the Sakai-Sugimoto model at finite temperature and set up the effective action for the

probe brane configuration and the U(1) gauge field. In sections 3 and 4 we obtain solutions

for the brane configuration and the gauge filed and discuss the chiral symmetry breaking in

the low and high temperature phases respectively. Section 5 is devoted to some discussions.

While preparing the manuscript of this paper, we have received a paper [22], in which a

gauge field background on the probe branes is used to represent the baryon number chemical

potential in studying hadronic matters in the Sakai-Sugimoto model. After submitting the

manuscript of this paper for publication, we have received a paper [23] discussing the chiral

phase transition in the D4/D8-D8 model, in which an error in the first version of our paper

was pointed out.

2. D4/D8-D8 brane system

The Sakai-Sugimoto model [11, 12] is based on a D4/D8-D8 brane system consisting of

S1 compactified Nc D4-branes and Nf D8-D8-brane pairs transverse to the S1. The brane

configuration of the system is

t x1 x2 x3 τ U θ1 θ2 θ3 θ4

D4 ◦ ◦ ◦ ◦ ◦ − − − − −
D8-D8 ◦ ◦ ◦ ◦ − ◦ ◦ ◦ ◦ ◦

(2.1)

with τ and θ’s being coordinates of S1 and S4 respectively. The period of τ is denoted as

δτ = 2π/MKK . In the large Nc limit and the near horizon limit the D4-branes are described

by a bulk background geometry, which is a classical solution of the type IIA supergravity

in ten dimensions. Assuming Nf ¿ Nc the D8-D8 pairs are treated as a probe which does

not affect the bulk background.

The finite temperature behavior of the Sakai-Sugimoto model was discussed in [13 –

15]. The bulk background geometry is represented by a metric with a periodic Euclidean

time coordinate tE ≡ it ∼ tE + δtE in addition to the periodic τ . The period of tE is the

inverse temperature δtE = 1/T . There are two such Euclidean solutions which have an
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appropriate asymptotic boundary behavior. One of them is the Euclidean version of the

extremal D4-brane geometry compactified on S1 with the metric

ds2 =

(

U

R

)
3

2
(

dt2E + δijdxidxj + f(U)dτ2
)

+

(

R

U

)
3

2

(

dU2

f(U)
+ U2dΩ2

4

)

,

f(U) = 1 − U3
KK

U3
, UKK =

4

9
R3M2

KK , (2.2)

where dΩ2
4 is the metric of S4 and R3 = πgsNcl

3
s with gs and ls being the string coupling

and the string length. The parameter UKK must be related to MKK as above to avoid

a singularity of the metric at U = UKK. With this relation the τ -U submanifold has a

cigar-like form with a tip at U = UKK . The dilaton φ and the RR 3-form C3 are given by

eφ = gs

(

U

R

)
3

4

, F4 = dC3 =
2πNc

V4

ε4, (2.3)

where ε4 and V4 are the volume form and the volume of S4. The other solution is the

Euclidean version of the non-extremal D4-brane geometry

ds2 =

(

U

R

)
3

2
(

f̃(U)dt2E + δijdxidxj + dτ2

)

+

(

R

U

)
3

2

(

dU2

f̃(U)
+ U2dΩ2

4

)

,

f̃(U) = 1 − U3
T

U3
, UT =

16π2

9
R3T 2 (2.4)

with the dilaton and the RR 3-form given in eq. (2.3). The parameter UT must be related

to T as above to avoid a singularity of the metric at U = UT . The tE-U submanifold has a

cigar-like form with a tip at U = UT . It is obvious that these two backgrounds are related

by interchanging τ , UKK and tE, UT .

It was shown [16, 8, 13] that the background (2.2) is dominant at low temperature,

while (2.4) is dominant at high temperature by comparing values of the Euclidean super-

gravity action for these backgrounds. A phase transition between these backgrounds occurs

at the temperature for UT = UKK, i.e. Tc = MKK/(2π). This phase transition is of the

first order and represents a confinement/deconfinement transition [16].

In refs. [13, 14] Nf D8-D8 pairs were introduced as a probe in the back-

grounds (2.2), (2.4). The effective action of the D8-branes consists of the Dirac-Born-Infeld

action and the Chern-Simons term

SD8 = T8

∫

d9x e−φ Tr
√

det(gMN + 2πα′FMN ) − i

48π3

∫

C3 TrF 3, (2.5)

where gMN and FMN = ∂MAN −∂NAM − i [AM , AN ] (M,N = 0, 1, · · · , 8) are the induced

metric and the field strength of the U(Nf ) gauge field AM on the D8-branes. T8 is the

tension of the D8-brane and α′ = l2s is the Regge slope parameter. The effective action for

the D8-branes has a similar form. The total effective action has a gauge symmetry

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A, (2.6)
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where U(Nf )L and U(Nf )R are symmetries of Nf D8 and D8-branes respectively. It was

argued in ref. [11] that this gauge symmetry corresponds to a flavor chiral symmetry of

quarks. The total effective action can be written in the form (2.5) with the integrations

being over the whole of the D8-D8 world-volume. We use this form of the effective action

in the following.

In refs. [11, 13] the gauge fields on the probe branes are treated as fluctuations rep-

resenting the hadron spectrum. In this paper we consider a background gauge field. We

assume that only the Euclidean time component of the U(1) gauge field has a non-vanishing

background. We will see that it corresponds to an introduction of the baryon number chem-

ical potential. We use a physical gauge for D8-brane world-volume reparametrizations and

use the spacetime coordinates other than τ as the world-volume coordinates. Then, D8

and D8-brane configurations are determined by τ as a function of those world-volume

coordinates. We make an ansatz that A0 and τ depend only on the coordinate U

τ = τ(U), A0 = A0(U). (2.7)

By this ansatz the Chern-Simons term in eq. (2.5) vanishes and does not concern us.

3. Low temperature phase

In the low temperature phase the geometry (2.2) is dominant. Using the ansatz (2.7) the

induced metric gMN on the probe D8-branes is given by

ds2 =

(

U

R

)
3

2
(

dt2E + δijdxidxj
)

+

[

(

U

R

)
3

2

f(U)(τ ′(U))2 +

(

R

U

)
3

2 1

f(U)

]

dU2 +

(

R

U

)
3

2

U2dΩ2
4, (3.1)

where τ ′ = dτ
dU

. Then, the effective action of the D8-branes (2.5) becomes

SD8 =
NfT8V4

gs

∫

d4x dUU4

[

f (τ ′)2 +

(

R

U

)3
(

f−1 −
(

2πα′A′
0

)2
)

]
1

2

, (3.2)

where A′
0

= dA0

dU
.

This action leads to equations of motion for τ(U) and A0(U)

d

dU









U4f τ ′

√

f (τ ′)2 +
(

R
U

)3
(

f−1 − (2πα′A′
0
)2

)









= 0,

d

dU









U4
(

R
U

)3
A′

0
√

f (τ ′)2 +
(

R
U

)3
(

f−1 − (2πα′A′
0
)2

)









= 0, (3.3)
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Figure 2: A D8-D8-brane configuration in the low temperature phase.

which can be easily integrated once. We obtain

(τ ′(U))2 =

(

U8
0

+ C2
(

U0

R

)3
)

f(U0)
(

R
U

)6

f(U)2
[

(

R
U

)3 (

U8f(U) − U8
0
f(U0)

)

+ C2

(

f(U) − f(U0)
(

U0

U

)3
)] ,

(

2πα′A′
0(U)

)2
=

C2

(

R
U

)3 (

U8f(U) − U8
0
f(U0)

)

+ C2

(

f(U) − f(U0)
(

U0

U

)3
) , (3.4)

where C and U0 are integration constants. As in the zero temperature case [11] and the

low temperature phase in ref. [13] we have imposed a condition τ ′(U0) = ∞. A typical

configuration of τ(U) is shown in figure 2. Since there is no place for the D8 and D8-branes

to end, they are connected at U = U0. We also impose the boundary condition A0(∞) = µ

at the both ends of the D8-D8 world-volume, where µ is a constant. We will identify this

constant with the chemical potential for the baryon number later. Solving eq. (3.4) with

this boundary condition we find for U ∼ U0

A0(U) ∼ A0(U0) + const. × C |U − U0|
1

2 . (3.5)

This solution is singular at U = U0 and does not actually satisfy the original equation (3.3)

unless C = 0. Therefore, we must choose C = 0 and obtain A0(U) = µ. Because of the

connected configuration of the D8 and D8-branes the chiral symmetry U(Nf )L × U(Nf )R
on the probe D8-D8 pairs is always broken to a diagonal subgroup U(Nf )V in the low

temperature phase. The situation is the same as in the cases without the gauge field

background [11, 13].

Instead of using the constant U0 to parametrize the solution we can also use the U = ∞
asymptotic separation L between the D8 and D8-branes in the τ -direction. It is related to

U0 by

L = 2

∫ ∞

U0

dU τ ′(U), (3.6)

where τ ′(U) is given in eq. (3.4) with C = 0.

– 6 –
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Substituting eq. (3.4) with C = 0 into the action (3.2) and introducing new variables

u = U/U0, uKK = UKK/U0 and f(u) = 1 − u3
KK/u3 the effective action becomes

SD8 = T̃8

∫ ∞

1

duu5

√

u3

u8f(u) − f(1)
, (3.7)

where

T̃8 =
NfT8V4

gs

(

R3U7
0

)
1

2

∫

d4x. (3.8)

Note that this reproduce the result in ref. [13].

4. High temperature phase

In the high temperature phase the geometry (2.4) is dominant. Using the ansatz (2.7) the

induced metric on the probe D8-branes is

ds2 =

(

U

R

)
3

2
(

f̃(U)dt2E + δijdxidxj
)

+

[

(

U

R

)
3

2

(τ ′(U))2 +

(

R

U

)
3

2 1

f̃(U)

]

dU2 +

(

R

U

)
3

2

U2dΩ2
4 (4.1)

and the effective action of the D8-branes (2.5) becomes

SD8 =
NfT8V4

gs

∫

d4x dUU4

[

f̃ (τ ′)2 +

(

R

U

)3
(

1 −
(

2πα′A′
0

)2
)

]
1

2

. (4.2)

This action leads to equations of motion for τ(U) and A0(U)

d

dU









U4f̃ τ ′

√

f̃ (τ ′)2 +
(

R
U

)3
(

1 − (2πα′A′
0
)2

)









= 0,

d

dU









U4
(

R
U

)3
A′

0
√

f̃ (τ ′)2 +
(

R
U

)3
(

1 − (2πα′A′
0
)2

)









= 0, (4.3)

which can be easily integrated once as before. As in the case without the gauge field [13, 14]

there are two types of solutions in the high temperature phase.

One solution is similar to the one in the low temperature phase. The integration of

eq. (4.3) gives

(

τ ′(U)
)2

=
U8

0 f̃(U0)
(

U
R

)3
f̃(U)

(

U8f̃(U) − U8
0
f̃(U0)

) , A0(U) = µ. (4.4)

where U0 is an integration constant. As before we have imposed the boundary conditions

τ ′(U0) = ∞ and A0(∞) = µ. A typical configuration of τ(U) is shown in figure 3 (a). The

– 7 –
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Figure 3: D8-D8-brane configurations in the high temperature phase.

chiral symmetry U(Nf )L×U(Nf )R is broken to a diagonal subgroup U(Nf )V . Substituting

eq. (4.4) into eq. (4.2) the effective action becomes

SU
D8 = T̃8

∫ ∞

1

du u5

√

u3f̃(u)

u8f̃(u) − f̃(1)
, (4.5)

where we have rescaled the variables as u = U/U0, uT = UT /U0, f̃(u) = 1−u3
T /u3, and T̃8

is given in eq. (3.8).

Instead of using U0 we can also use the asymptotic separation L in eq. (3.6) to

parametrize the solution, which is more convenient when comparing this solution to the

other one. The relation between L and U0 is obtained from eqs. (3.6) and (4.4) as

L =

(

R3

U0

)

1

2

F (uT ), (4.6)

where

F (uT ) = 2

∫ ∞

1

du

√

√

√

√

f̃(1)

u3f̃(u)
(

u8f̃(u) − f̃(1)
) . (4.7)

For the other solution the first integration of eq. (4.3) gives

τ ′(U) = 0,
(

2πα′A′
0(U)

)2
=

C2

U8
(

R
U

)3
+ C2

, (4.8)

where C is an integration constant. τ ′(U) = 0 is the trivial solution of (4.3). A typical con-

figuration is shown in figure 3 (b). It describes a situation that the probe D8 and D8-branes

separately extend along the U -direction in straight lines. The separation between the D8

and D8-branes is chosen to be the same as the asymptotic separation L in the previous

solution. The chiral symmetry U(Nf )L × U(Nf )R is unbroken in this case. Substituting

eq. (4.8) into eq. (4.2) and using the rescaled variables as in eq. (4.5) the effective action

becomes

S
||
D8

= T̃8

∫ ∞

uT

du
u5

√
u5 + c2

, (4.9)

– 8 –
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Figure 4: ∆S as a function of uT for various values of c. From the bottom to the top each line

represents the case for c = 0, 0.2158, 0.2252, 0.3 respectively.

where

c2 =
C2

R3U5
0

. (4.10)

To determine which of the two solutions is dominant we compare the values of the

effective action. From eqs. (4.5), (4.9) we obtain the difference as

∆S ≡ SU
D8

− S
||
D8

T̃8

=

∫ ∞

1

du u5

[

√

u3f̃(u)

u8f̃(u) − f̃(1)
− 1√

u5 + c2

]

−
∫

1

uT

du
u5

√
u5 + c2

. (4.11)

For ∆S < 0 the curved configuration (4.4) is dominant and the chiral symmetry is

broken, while for ∆S > 0 the straight configuration (4.8) is dominant and the chiral

symmetry is unbroken. Although the integrals in eqs. (4.5), (4.9) are divergent at U = ∞,

the difference is finite due to the same asymptotic behaviors of τ(U) and A0(U). We

evaluate eq. (4.11) by numerical calculations. For that purpose it is more convenient to

change an integration variable to z = u−3, which has a finite interval 0 ≤ z ≤ 1 for

1 ≤ u < ∞. The result of the calculations is shown in figure 4. The behaviors of ∆S as

a function of uT for various values of c are given. The special case c = 0 reduces to the

result in ref. [13]. In this case ∆S is positive for uT larger than a certain value uT0 and

negative for uT < uT0. The chiral symmetry is broken for uT < uT0 and unbroken for

uT > uT0. The point uT = uT0 is a phase transition point. This phase transition is of the

first order since two different configurations in figure 3 are possible at the transition point.

As c increases, the transition point uT0 decreases. When c > 0.2158, there appears a new

region near uT = 0 in which ∆S > 0. When c > 0.2252, ∆S is positive for all values of uT

and the chiral symmetry is always unbroken.

– 9 –
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Figure 5: The phase diagram in the c-uT space.

From these results we can draw a phase diagram in the c-uT space as shown in fig-

ure 5. The chiral symmetry is broken in the region of small c and small uT and unbroken

outside of it. Note that we are considering here the high temperature phase of the con-

finement/deconfinement transition and only the part uT > uKK of this diagram is valid.

It is more appropriate, however, to draw it in the space of the temperature T and the

baryon number chemical potential µ. From eq. (2.4) the temperature T is related to uT as

T =
3

4π

(

U0

R3

)
1

2 √
uT =

3

4π

√
uT

L
F (uT ), (4.12)

where we have used eq. (4.6).

The relation of the chemical potential µ to uT and c can be obtained as follows. From

eq. (4.8) the large U behavior of A0(U) has a form

A0(U) ∼ µ +
v

U
3

2

, (4.13)

where µ and v are constants. We have chosen the same value µ for the constant term

as in the curved solution (4.4). According to the AdS/CFT dictionary [4] for a massless

vector field in a six-dimensional bulk, µ is a source coupled to an operator of dimension

four O4 on a five-dimensional boundary. The U(1) gauge field A0 defined on the whole

of the D8-D8 world-volume contains the gauge fields for both of U(1)V and U(1)A in the

flavor symmetry (2.6). The part of A0 which is symmetric for an interchange of D8 and D8

corresponds to U(1)V , while the part which is antisymmetric corresponds to U(1)A [11, 22].

Since the constant term µ is symmetric, it is a background value of the U(1)V gauge field

coupled to the baryon number density O4, and µ is the baryon number chemical potential.

Integration of eq. (4.8) determines A0(U) up to a constant term (µ in eq. (4.13)). We

can fix this constant term as follows. We first require that A0(U) vanishes at U = UT
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because of the regularity. To see this we first change the coordinates from (U, tE) to (r, θ)

defined by

U3 = U3
T + UT r2, θ =

3

2

(

UT

R3

)
1

2

tE. (4.14)

From the induced metric (4.1) with τ ′(U) = 0 we see that (r, θ) are the polar coordinates

near the point U = UT . The point U = UT corresponds to the origin r = 0 and should be

treated with care since the polar coordinates are not good coordinates near the origin. It

is better to use the Cartesian coordinates

y = r cos θ, z = r sin θ. (4.15)

The relation between A0 and the components Ay, Az in the coordinates (y, z) is obtained

from A0dtE = Aydy + Azdz as

A0 =
3

2

(

UT

R3

)
1

2

r (−Ay sin θ + Az cos θ) . (4.16)

Since we require that Ay and Az are regular at the origin r = 0, A0(U) must vanish at

U = UT . We also note that although A0(U) is a gauge dependent quantity, it must vanish

at U = UT in any gauge. Only the gauge transformations which preserve the condition

A0(UT ) = 0 are allowed.

The vanishing of A0(U) at U = UT fixes the constant term in this case and we find

A0(U) =
U0

2πα′

∫ u

uT

du′

√

c2

u′5 + c2
. (4.17)

The chemical potential µ is obtained as the asymptotic value for U = ∞

µ = A0(∞) =
R3

2πα′L2
(F (uT ))2

∫ ∞

uT

du

√

c2

u5 + c2
, (4.18)

where we have used eq. (4.6) to eliminate U0. This gives an expression of the chemical

potential in terms of uT and c.

Using eqs. (4.12), (4.18) we can convert the phase diagram in figure 5 to that in the

µ-T space by numerical calculations. Using dimensionless variables

T̃ = LT, µ̃ =
2πα′L2

R3
µ. (4.19)

the phase diagram in the µ̃-T̃ space is shown in figure 6. Only the part of this diagram

for the high temperature phase of the confinement/deconfinement transition, i.e. T̃ > T̃c =

LMKK/(2π) is valid. Therefore, our result of the phase diagram looks like figure 1 as we

explained in Introduction. The orders of T and µ at the transition points can be estimated

from eq. (4.19). Using R3 = g2
YM

Ncl
2
s/(2MKK) and µ̃, T̃ = O(1) we obtain

T = O(L−1), µ = O(g2
YMNcL

−2M−1

KK). (4.20)

If we assume L = O(M−1

KK), the transition temperature is of the order of the compactifi-

cation scale MKK , and the chemical potential is of the order g2
YM

NcMKK , which is much

larger than MKK since g2
YM

Nc À 1.
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Figure 6: The phase diagram in the µ̃-T̃ space.

5. Discussions

We analyzed the Sakai-Sugimoto model at finite temperature and finite baryon number

chemical potential. The chemical potential is introduced as an asymptotic value of the U(1)

gauge field on the probe D8-D8-branes. Using this model we studied the phase structure

of the chiral symmetry breaking and obtained the phase diagram in figure 1. This phase

diagram should be compared with that expected in QCD [24]. Our result is especially

different from the QCD expectation at low temperature. In QCD the chiral symmetry is

expected to be unbroken even at zero temperature if the chemical potential is sufficiently

large. In our analysis the chiral symmetry is always broken below Tc since the geometry

of the τ -U space allows only the curved configuration of the probe branes. Since we used

the probe approximation for the D8-D8-branes, the gauge field on the branes (the chemical

potential) does not affect the bulk geometry. It is interesting to see whether back-reactions

of the gauge field on the geometry of the τ -U space change the phase structure below the

temperature Tc. To fully understand the phase diagram we need an analysis beyond the

probe approximation.

In the usual field theoretical approaches to the chiral symmetry breaking one considers

condensations of quark bilinears ψ̄ψ as an order parameter. The quark masses are sources

of these operators. In fact, in other models of the holographic QCD [7, 8] the mechanism of

the chiral symmetry breaking is different from that in the Sakai-Sugimoto model. The chiral

symmetry is realized as the rotational symmetry of the probe branes in the transverse space.

The quark masses and the quark condensations can be read from asymptotic behaviors of

the probe branes. In the Sakai-Sugimoto model quarks are always massless since the

asymptotic distance between the D4-branes and the D8-D8-branes, which is proportional

to the quark mass, is zero. It is not clear how to introduce quark masses in this model. It is

interesting to clarify the relation between the mechanisms of the chiral symmetry breaking

in the Sakai-Sugimoto model and in other models.
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[18] M. Cvetič and S.S. Gubser, Phases of R-charged black holes, spinning branes and strongly

coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195].

[19] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and

fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197].

[20] T. Albash, V. Filev, C.V. Johnson and A. Kundu, Global currents, phase transitions and

chiral symmetry breaking in large-Nc gauge theory, hep-th/0605175.

[21] R. Apreda, J. Erdmenger, N. Evans and Z. Guralnik, Strong coupling effective Higgs potential

and a first order thermal phase transition from AdS/CFT duality, Phys. Rev. D 71 (2005)

126002 [hep-th/0504151].

[22] K.-Y. Kim, S.-J. Sin and I. Zahed, Dense hadronic matter in holographic QCD,

hep-th/0608046.

[23] A. Parnachev and D.A. Sahakyan, Photoemission with chemical potential from QCD gravity

dual, hep-th/0610247.

[24] J.B. Kogut and M.A. Stephanov, The phases of quantum chromodynamics: from confinement

to extreme environments (Cambridge Univ. Press), 2004.

– 14 –

http://jhep.sissa.it/stdsearch?paper=04%281999%29024
http://arxiv.org/abs/hep-th/9902195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C104026
http://arxiv.org/abs/hep-th/9904197
http://arxiv.org/abs/hep-th/0605175
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C126002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C126002
http://arxiv.org/abs/hep-th/0504151
http://arxiv.org/abs/hep-th/0608046
http://arxiv.org/abs/hep-th/0610247

